
www.manaraa.com

Paul M. Clarke, Peter Elger, and Rory V. O'Connor. 2016. Technology enabled continuous software development. In Proceedings of the
International Workshop on Continuous Software Evolution and Delivery (CSED '16). ACM, New York, NY, USA, 48-48. DOI:
http://dx.doi.org/10.1145/2896941.2896943

Technology Enabled Continuous Software Development
Paul M. Clarke

School of Computing
Dublin City University, Ireland

Lero - Irish Software Research Centre
+353-1-700-7021

Paul.M.Clarke@dcu.ie

Peter Elger
NearForm Ltd.

Suite 420 Mountain View
CA 94040, USA

+1-916-235-6459
Peter.Elger@nearform.com

Rory V. O’Connor
School of Computing

Dublin City University, Ireland
Lero - Irish Software Research Centre

+353-1-700-5643
Rory.OConnor@dcu.ie

ABSTRACT
Given that organizations need to innovate and release software in
faster parallel cycles of days or even hours, there are good reasons
why new practices are being adopted in industry. In this paper, we
present the case of a highly responsive process that is driven by
tooling technology and which facilitates continual delivery of
software at up to hourly intervals. This approach can inform
academic and practitioner dialogue on current challenges and
potential solutions, and on the evolution of new ‘better’ practices.

CCS Concepts
• Software development process management

Keywords
Software development lifecycle; Lean software development.

1. INDUSTRIAL PRACTICE – A CASE
Software development organizations are under more pressure than
ever before to evolve software intensive systems through the
release of valuable software in increasingly shorter time durations.
At one time, software releases would occur one or two times per
year, however with current competitive market opportunities this
has been reduced to weekly, daily and hourly time periods.

One software organization at the forefront of such innovative
process design is NearForm Ltd., a software development
company with a presence in the US and Europe and which
continues to witness impressive growth through the continual
delivery of high quality software to some of the largest companies
in the world, including blue chip financial institutions. Value is a
key focus in the NearForm lifecycle and it is concerned with an
acute responsiveness to client needs (be they new features or
defect resolutions). The organization works to a regular 5 day
iteration for software development, deploying working software
weekly through a standard feature bundle. For customers who
desire even higher levels of responsiveness, the company operates
continual deliveries of working software, at sometimes daily and
even hourly intervals. While regular iterations can be predictable
from the outset, continual analysis of the value stream ensures that
each iteration may be re-planned in real time, delivering the
highest possible level of value from organizational capacity.

Whilst it is acknowledged that tooling can affect the design of a
software process [1], the impact of technology on shaping the
process in this case is extremely profound and initially appears to
run contrary to the Agile Manifesto value of ‘Individuals and
interactions over processes and tools’. Within NearForm the
continual software evolution and delivery is made possible
through the aggressive incorporation of contemporary and
predominately open source software tools. While the speedy
delivery of innovative features is a vital enabler of competitive

advantage, it is only effective if it is accompanied by reliable and
high quality deployments. To this end, the availability of cutting
edge technology and tools has driven the current form of the
organizational software processes, with a strong focus on both
deployment and application quality. There are four key
technologies driving the process architecture: (1) Java-script and
Node.js which enables extremely rapid code development by
utilizing the same programming language across the entirety of
the system; (2) alongside a distributed micro-services architecture,
under which the system is broken down into a set of discreet co-
operating processes, typically each service is of the order of
several hundred lines of code only. (3) This architectural approach
is coupled with a continuous deployment model, layered over the
Docker container engine, whereby individual services (or several
services at a time) may be deployed without perturbing the system
as a whole. (4) Finally the company ensure quality through steps
such as code commit hooks via GitHub (for distributed revision
control and source code management) and the Travis CI tool set.
Together, these technologies allow the company to perform well
under a time and materials contract basis, whereby clients are
initially attracted through the rapid delivery of a prototype in 10
days, and thereafter, regular iterations of new working software
are reviewed every 5 days.

The ever-increasing demands on developers will continue to cause
major differences in how processes are designed, deployed and
evolved. Therefore it is essential that evolving practices and
success stories such as the one described herein are documented
and exchanged.

2. REFERENCES
[1] Clarke, P., O’Connor, R. V. 2012. The situational factors that

affect the software development process: Towards a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Limerick Institutional Repository

https://core.ac.uk/display/76157899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.manaraa.com

Paul M. Clarke, Peter Elger, and Rory V. O'Connor. 2016. Technology enabled continuous software development. In Proceedings of the
International Workshop on Continuous Software Evolution and Delivery (CSED '16). ACM, New York, NY, USA, 48-48. DOI:
http://dx.doi.org/10.1145/2896941.2896943

comprehensive reference framework. Information and Software Technology, 54(5): 433-447.

